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Cyclic group formalism and screw symmetry operation are used to clarify 
and generalize the definition of H/ickel and M6bius systems. It is shown that 
the MSbius ring system has half-integral pseudo-angular momentum similar 
to that of spin space, and that applications of MSbius electronics to chemical 
reactions have been based on truncated single-circle MSbius rings which have 
unique beginning and end (Sect. 2). This concept is illustrated by application 
to the [1, 7] antarafacial hydrogen shift (Appendix A and Figs. A1-A3) .  
Definition of a Hiickel versus M/Sbius ring system for in-plane and out-of- 
plane 7r, 8 and ~b orbitals as well as the appropriate relative angle of twists 
are given (Sect. 2 and Table 1). Using the concept of the compatibility of 
the twist (screw) angle and rotation around a ring, we also derive the proper  
phase coherence and energy correlation between a parent cyclic (H/ickel or 
M/Sbius) molecule and its dissociated linear fragments (Sect. 4). The concept 
of parentage in diabatic fragmentation is discussed. 

For finite, open, helical chain molecules, an exact periodic boundary condition 
based on the compatibility of twist angle and number of turns in a helical 
ring parent molecule is applied to derive their analytic wave functions (Sect. 
5 and Table 2). For bond-alternating "l inear" and cyclic H/ickel and MSbius 
systems we also derive the explicit L C A O - M O  wavefunctions, energies, their 
degeneracies and their exact corresponding quantum members for even and 
odd atom systems at highest bonding and lowest antibonding levels (Sect. 3, 
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Figs. 1-3). The corresponding wavefunctions and energies for uniform-bond 
systems are given for comparison and for completeness (Sect. 3). 

Key words: Conjugate systems - Bond alternation - H/ickel systems - M6bius 
molecular orbitals - Helical molecules - Twisted molecules - Symmetry 
correlation. 

1. Introduction 

Orbital theory of pericyclic reactions [1, 2, 3] of Hiickel [4] and M/Sbius [5, 6, 
7] systems has received a great deal of attention. There have been many 
applications of the M/Sbius concept in such hydrocarbon reactions, particularly 
by Zimmerman [6, 7] but there has been less work on the abstract geometric 
nature of the M~Sbius ring per se since the earlier work of Heilbronner [5]. A 
key to  the orbital correlation theory for pericyclic reactions of Woodward and 
Hoffmann is the knowledge of orbital energies, symmetries, and the relative 
phases of LCAO-MO wavefunctions at reaction sites. The wavefunctions and 
energies of uniform-bond cyclic or open-chain Hiickel systems (of parallel 
7r-orbitals) are relatively well-known [8, 9]. For alternating-bond [9, 10] Hiickel 
systems, however, even the classic works [11, 12, 13, 14] did not explicitly give 
the normalized wavefunctions for the linear open chains in analytical form (in 
fact, general treatment of the 4 N-atom cyclic chain also appears to be missing). 
In the case of M6bius systems neither the alternating-bond (cyclic and "linear") 
nor the uniform-bond "linear" daughter system from MObius parent has been 
treated. While the twisting of orbitals (from parallel) is natural and self-evident 
in a MiSbius system, the twisting in a HiJckel molecular system in a linear chain 
or in a helical situation is in principle possible (such as in the case of skewed 
dienes [ 15, 16]). Yet no systematic treatment has been given. The early treatment 
of helices is mainly based on infinite linear systems for which the Born-von 
Karman cyclic boundary condition applies. No general account was taken of 
f inite systems. In the above mentioned systems, even where work is available, 
there appears to be insufficient detailed account of the following: one to one 
correspondence of which quantum number for which energy level that corre- 
sponds to which LCAO molecular orbital. This is important especially in the 
case of degenerate levels, and in the case of even vs. odd number of atoms and 
bonds. The clear delineation of which is the highest occupied and which is the 
lowest empty orbital is also of paramount importance in frontier-orbital reaction 
theory [19]. In addition, while the existing work on hydrocarbons provides many 
interesting examples of ~- (and o-) systems, in view of the discovery of quadruple 
(and higher multiple) bonds [20, 21] and in view of the interest in transition 
metal chain systems [22, 23, 24a], we should extend to conjugate systems 
involving 6-orbitals (Hiickel or M6bius chain beyond the P= - d~ of Craig [24b]). 
It is the purpose of this work to re-examine the basic principle behind the 
solutions, energies and wavefunction for these systems and to derive general 
and comprehensive formulas and energy level diagrams for those not available 
in literature. 
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2. Geometric View of Hiickel and MObius Systems 

We still apply cyclic boundary conditions and use cyclic group formalism [25-26]. 
But to the usual rotation of angle 0 around the circle, Co, we add a rotation 
operation Cx for twist of angle X (from being parallel to the first atomic orbital 
q~0) making it resemble a screw motion in the space group. Thus, we generate 
the Bloch wavefunction r for N atoms around a ring from a projection operator 
as follows: (C~ and Co commute) 

1 N-1 -(2"n'i/A)Xk"'vk"'~k~ 
0i =~-~k~o e cxt_. oq~o (1) 

where A is the wavelength of the periodic electron wave. Xk measures the length 
of the "arc" from the initial atom ~bo to &k. It is defined as 

Xk = RkO (uniform bonds) 

X2k = R k  (01 + 02) (for an even atom, alternating bonds) (2) 

X2k-1 = R k  (01 + 02)-R02 (for an odd atom, alternating bonds) 

where the bond between ~b04~1 has 01 and fll and the next bond between ~bl and 
~b2 has 02 and/32. R is the average radius of the ring (see illustration A-1 in 
Appendix). The radian angle 0 subtended by the arc formed with two neighboring 
atoms is proportional to the bond length between them--viz. 01/02 = ll/12-3',  
for the alternating neighboring bonds. Application of the usual Hfickel (+ sign) 
or M6bius (-  sign) cyclic boundary condition, 

e (2"rri/A)RNO = +e 2i~r] (3) 

then yields the LCAO-MO for uniform bonds as 

I[li'~- N--I~, Ck~)k=~-N1 N~I e(2"~iJ/N)k&k (Hiickel) (4a) 
k=0 k 0 

o r  

1 N-1 e[2~i(J+~)/N]kq~k (M6bius). (4b) = k2 
=0 

These wavefunctions have the same form as those used by Heilbronner [5] and 
Zimmerman [3, 6] except that we now generalize the twists in the orbitals. Note 
that we have used the coefficients to define the system's boundary conditions 
(3). Subsequently we will show that the twists must be compatible with the 
coefficients to yield stationary waves for the idealized Hiickel and M/Sbius 
systems. 

This is the same type of wavefunction that can be obtained from cyclic group 
projection operators [27], and f in Eq. (4a) is recognized as a pseudo-orbital 
angular momentum around the cyclic ring. In Eq. (4b) we have purposely 
displayed (/ '+1/2) for M6bius system as the half-integral pseudo-angular 
momentum, corresponding to the angular momentum of a spin space. 
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Because of this common origin, the form of the wavefunctions for both systems 
is similar. If the twist of orbitals is not present the cyclic M6bius system is a 
(non-existing) component of the cyclic Hiickel system. This component self- 
destructs because of destructive interference of the wave around the single 
Hiickel circle (ring), a property of the half-integral (rather than integral) angular 
momentum. It, however, will survive under two conditions: (1) when the orbital 
twists ~bk = ~b ~ cos AX also gives a half-integral angular momentum which adds 
to the half-integral angular momentum in the M/Sbius coefficient to give an 
integral value; (2) when the orbitals have no twist but there is a true M6bius 
ring which should have two "circles" corresponding to 0 = 4~r rotation instead 
of the 2~- rotation here. This is similar to a spin space [28, 29] requiring 4~r 
rotation to return to the original point. We want to stress here that the minus 
sign imposed as M6bius condition in Eq. (3) is but an expedient way to "truncate" 
a true M6bius strip confining it to one of its two original faces, and that a / / o f  
the M6bius system used in chemistry have been truncated single-circle incomplete 
M6bius strips. As illustration, suppose we take a strip of paper initially having 
two sides, to construct a MSbius ring. When we traverse 2~- (one circle) angle 
around the ring, we travel only one side of the paper. It is after we have traversed 
4~- (2 circles) around the ring, we would have travelled both sides of the paper 
and return to the original starting point. Only this complete M6bius ring has no 
beginning and no end and has true translational symmetry which permits us to 
shift along the ring at will. But, for the truncated single-circle M6bius systems 
in chemistry, there is a distinct beginning point (at 4~0) and a distinct end point 
at 4~N-a where interaction sign changes as it progresses to ~bN = -~b0. As a result, 
in the LCAO molecular orbital, the real coefficients of atomic orbitals for a 
(truncated) M6bius system cannot be arbitrarily shifted without causing possible 
change in the nature and energy of the M.O. Only if one has a complete two-circle 
M6bius ring (with 2N atoms) the one-unit shift (or any integral atomic shift) 
will produce exactly the same real wavefunction with the same energy. 
However, when the coefficients are fixed with correct reference to the inter- 
action sign change and proper twists are present, the second M6bius circle is 
redundant. 

Returning to the usual Htickel and (truncated) M6bius system, if the complete 
cycle is 2~r then each rotation Co corresponds to 2~r/N angle. However, the 
constraint here is that there are two rotations Co and Cx instead of one and they 
must be compatible : namely as repeated Co rotations traverse the N atoms and 
arrived at the 2~r end point, the N repeated twists of Cx must also produce, at 
this end point, the desired Hiickel condition ("plus" sign in Eq. (3), meaning 
that the last orbital 4~N is identical to the first orbital ~b0) or to the M6bius 
condition ("minus" sign in Eq. (3), meaning that the last stop yields an orbital 
4~N which is of the opposite sign to the first orbital ~bo). For a ~r-atomic orbital 
with angular momentum A =  1, twists of ~r, 3r or (2 I+  1)It would give rise to 
a sign change (negative sign, M6bius condition) and hence X = rr/N, 3~r/N and 
(2I + 1)~/N, where I is an integer. A twist of 3~" corresponds to a super-M6bius 
strip constructed by twisting the paper three half turns instead of the usual half 
turn (~). These are for idealized geometrical models. Chemical adaptations in 
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Table 1. Angle of twist X for atomic orbitals in a N-atomic ring system 

~ N  Atomic orbitals A = 0 A = 1 A = 2 
Ring nlr nlzr n16 system 

A=3 
n ~  

407 

Hfickel 

M~Sbius 

2~" 4~" ~" 27r 2~" 4r 
0 0 , ~ , ~  . . . .  O,N, N . . . .  O , N ,  N . . . .  

2Irr Ire 2Irr 

N N 3N  

3r ~r 3,rr ~ 3~r 

N '  N . . . .  2N'  2N . . . .  N '  N . . . .  

(2/+ 1)~r (21 + 1)7r (21 + 1)~" 
N 2N 3N 

li terature may  draw analogy only to the change of sign of resonance  integrals 
similar to that  due to twisted orbitals. 

In general,  for  an a tomic  orbital with electron azimuthal  angle cbe and angular  
m o m e n t u m  A, 

c N  lAck  eiA(4~ +Nx) _+_eiA4% x e  ~ ~ 

where  the plus sign again means  Hiickel and the minus sign means  M6bius  
condit ion.  F r o m  the above,  the angle of twist X that  is compat ible  with these 
condit ions for  or, ~r, 6, and ~b bonding  atomic orbitals can be derived and they 
are shown in Table  1. Only  when the Hiickel and M6bius  twists are combined  
respectively with Hfickel and M6bius  coefficients [4a, 4b], will there  be s ta t ionary 
waves with integral angular  m o m e n t u m  in three-d imensional  real space, e.g. for 
~" orbitals, 

Htickel 

1 N--I (2"rrij/N)k~O 2~'k  
O i = ~  Y. e c o s - -  

x/N k =o N 

1 1 u-1 [e (2=i/u)"+~)k+e(2=i/u)"-'k]r ~ - E 
2 , /N  ~=o 

J = ] + 1, ] - 1 = integers 

M6bius  

1 N-1 e(2~.~+.)/N)kr ~ rrk 
r = - ~  E c o s -  

x/Nk=0 N 

1 1 u - 1  [e (2=i/N)(i+l)k e(Z"i/N)ik]& ~ =- -  ~ + 
2 4Nk=o  

J = ] + 1, ] = integers 

where  q~ o is the orbital wi thout  a twist. 
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The azimuthal angular momentum A can be quantized (1) with respect to the 
local (at each atomic site) axis perpendicular to the plane of the ring. Thus the 
orbitals are in-plane orbitals and the twists are in-plane twists, for example, see 
Zimmerman's treatment of cyclopropane [6] or (2) with respect to the back bone 
of the ring namely with respect to the tangent to the curve at each atomic site, 
thus the orbitals are out-of-plane orbitals and the twists are out-of-plane twists. 
See for example skewed cyclobutadiene. 

The out-of-plane twists are strictly speaking applicable only to a smooth ring 
with infinite number of atoms or to a straight linear chain. For finite number of 
atoms, it applies only to special cases where there is equal orbital interaction 
between any pair of the twisted nearest-neighbor atoms. Namely the resonance 
integral/3 between the nearest neighbours must be the same (except for a sign 
change in the M6bius case, between the first and last atom) so that cyclic boundary 
condition is valid and the usual solution of the symmetric secular determinant 
obtains. In this case fl =/3 ~ cos AX where 130 is the resonance integral forparallel 
orbitals and A is the azimuthal angular momentum of the twisted orbital. 

Thus, in our definition of the M6bius system we can take a homologous series 
of Walsh model of ("planar") cycloalkanes (with N carbon atoms around the 
ring) and consider the in-plane "~-" orbital (in contrast to the sp 2 hybrid o- 
orbital). Then the angle of twist for successive in-plane ~-orbitals is by geometry 
X = (N -2)~r/N. Based on this and referring to Table 1, cyclopropane 0( = 60 ~ = 
7r/N) is M6bius [6], cyclobutane (X = 90 ~  21r/N) is Htickel, cyclopentane 
0( = 108 ~ = 31r/N) is M6bius, cyclohexane (X = 120 ~ = 47r/6) is Hiickel, cyclo- 
heptane 0( = 5r = 5~r/N) is M6bius and cyclooctane 0( = 135~ is 
Hiickel. But the angle of twist for the in-plane spZtr is always 2 ~ / N  and the 
system is always Hiickel (see Table 1). 

An abstract example of out-of-plane twist is provided by the four (N = 4)~- 
orbitals in allene [3, 6,7]. 

The above geometrical definition of the Hiickel and M/Sbius system has allowed 
us to make generalization to orbitals of different angular momentum (Table 1) 
and to other twisted and helical systems, etc. (see below). Our geometrical 
definition can be related to Mason's [30] and Zimmerman's [6, 7] definition if 
we make use of the property of the secular determinant which is used for the 
solution of LCAO-MO. 

3. Bond-Alternating Cyclic and "Linear" Hiickel and M6bius Systems 

In treating bond-alternating systems we make sure that (1) the orbital phase 
difference between two neighboring atoms (one with even, one with odd number- 
ing) is explicitly expressed in terms of the ratio between the known bond lengths: 
y = ll/12(=01/0z). (2) The wavefunction of the alternating system reduces to that 
of uniform system when ~/= 1 or 11 = la. (3) The energy which is expressed in 
terms of the different resonance integrals/31 and/32 will also reduce to that of 
uniform systems when/3~ =/32 =/3. (4) Each level of the alternating system goes 
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over to the corresponding level of the uniform system. This we do by properly 
labelling each level with its unique quantum number. (5) The difference in energy 
pattern between even and odd atom systems is definitively worked out, especially 
at the highest bonding, lowest anti-bonding and the non-bonding levels. 

For a ring of bond-alternating system with 2n atoms, the H/ickel (+ sign) and 
M6bius ( -  sign) cyclic boundary condition similar to Eq. (3) is 

e (2~i/~nn(ol+o2) = +e 2~;i. (5) 

From this and the ratio 3/= 01/02 and Eqs. (1)-(2), we get the wavefunction and 
energy for a cyclic H/ickel system with alternating bonds and with 2n atoms as 
follows: (where n may be even ne or odd no). 

_ 1_~___ [ ~ e (a~'y/~,(k-1/(l+,)).~ n-'e(2-'i/,o~.~, l 
~ / -  ~ / 7  I-k = 1 2 n  qJZk-1 "q- k=051 ~,ekj, (6a) 

4 111/2 
E i = cr + /32 +/3~ + 2/31fl2 cos 2-n-n J ' (6b) 

where the minus sign applies to 

]= O, 1, 2 . . .  ( 2 - 1 ) ,  ( ~ - - ~ ) ;  (3n2+----~1), ( - ~ +  1) . . . .  (2n - 1), 

the plus sign applies to 

j =  (no;._____.ll), ( 2  + 1 ) . . .  ( n - l ) ,  n; ( n + l )  . . . .  ( ~ - / - 1 ) ,  (3n2------~1) ; 

and where for 

ne 

3n~ 
i = E = + I& - & [ .  

The energy levels, their degeneracies and exact correspondence with wavefunc- 
tions are shown on Fig. 1. The energy pattern, for the uniform-bond [8-14] 
Hiickel systems are available for comparison. The angles of twist given in Table 
1 applies to the above Hfickel system. Whereas only bond-alternating cyclic 
systems with even number of atoms are susceptible to this cyclic group treatment, 
the corresponding bond-alternating linear H/ickel systems can have even or odd 
atoms. The general wavefunction and energy for the linear N-atom H/ickel 
system with alternating bonds are derived as follows: 

]-~-r(N,/2)X(No+l)/2)sin2:/ l  ( k 1 

(N/Z~X(no-1)/2) . 2r f  . , ] 
+ 51 sm ~ - i - x ~ 2 k  ] (7a) 

k = l  



410 Y.-N. Chiu 

o ~ . \  -~, -4 
n-1 

t3n~ t3n" 1 ~ / ~ tr%+l~tn" +1) 1,81-,021 

3%+1 3he +1 -2  no-1 ne 1 
( - 2 - -  )' ( - T  

2 n - 1 ~ ~ _ ~ 0  '1 

4% 
J E - o  

Fig. 1. Energy levels and corresponding quantum numbers of Cyclic Hiickel system with even number 
(2n) atoms and alternating bonds, Ne = even, No = odd. The energy levels are symmetric with respect 
to the E - a = 0 (dotted) line. (Eq. 6) 

I/2 2r 
+231/32 cos E = a + [ / 3 ~  +[322 N 1] (7b) 

where the minus sign applies to 

the plus sign applies to 

and where for 

No+l 
f =  2 ' E = a .  

The twist angles that apply to this linear Hiickel system are those for the parent 
(see sect. below) cyclic Hiickel system with 2N + 2 atoms (in Table 1 replace N 
by 2N + 2). 

The energy pattern is similar to that of the uniform-bond system but the splitting 
between the highest bonding and lowest anti-bonding orbitals is larger for the 
alternating system. 

For bond-alternating cyclic M6bius system with 2n atoms we obtained the 
wavefunction and energy as follows: 

e[Cri(2j+l)/n](k-1/(l+'v)).g. ..}_ Oi = ~/2n= k=152 ~2k-1 k=o~ e['rri(2i+l)/n]k~2k, (8a) 

2r (2j + 1)~ 1/2, 
E i = a + [(32 +1322 + 2/3~/32 cos ~n J (8b) 
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where the minus sign applies to 

the plus sign applies to 

and where for 

n o - 1  
f =  , E = a  - [~1 - /~21,  

2 

3no-1  
Y - - ,  E +1#1-#21. 

2 

The energy levels, degeneracies and their exact correspondence with the 
wavefunctions are shown in Fig. 2. The energy patterns for the uniform-bond 
M6bius system [5] are available. 

The angles of twist given in Table 1 apply to the above M6bius systems. Whereas 
linear N-atomic Hiickel system can always be obtained from the (2N + 2) parent 
cyclic Hfickel system, linear N-atomic M6bius system cannot be obtained from 
the corresponding parent M6bius system because the wavefunction will not 
vanish properly beyond the end of the linear chain. It can be obtained however 
from the (N + 1) parent M6bius system. But it turns out to be a partial fiction 
because it has incomplete number of energy levels. The reason is that in a 
(2N + 2) parent cyclic Hiickel system, the exponential wavefunctions of Eq. (4a) 
naturally combine to give (N + 2) cosine functions and N sine functions. The 
sine function sin [2rrf/(2N +2)]k vanishes properly beyond the chain at k = 0 
and k = N + 1 and are chosen naturally as the linear wavefunctions. On the other 

n~ "I~ ~ n-1 

3no-3 3ne _~~ ' 3__~__ 
_ _  ___II ', ? ( T ) , ( T - I )  , 3~o-I ~ - - ,  -- l~-Pzl 

§ . . . . . . .  o o - T  - - - 0 

(--g--),-T (---~)'(-T 

j E -a  

Fig. 2. Energy levels and corresponding quantum numbers of Cyclic M6bius system with even 
number (2n) of atoms and alternating bonds. The energy levels are symmetric with respect to the 
E - a = 0 (dotted) line. (Eq. 8) 
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hand the cyclic M6bius exponential functions of Eq. (4b) combine to give half 
cosine functions and half sine functions (for even number of atoms, for odd 
number of atoms there is one more consine). The sine function does not vanish 
at the desired boundary, simply because the sine function sin [2r 
(2N + 2)]k is not zero at k = N + 1. It vanishes only at k = 2N + 2 hence the 
choice of parent cyclic chain that is one unit larger than the linear chain (of size 
2N + 1). Because the bond-alternating M6bius cyclic has even number of atoms 
(odd-number not amenable to cyclic group treatment) we can take it to be 
No+ 1 = 2n when No is odd. And the N0-chain wavefunction and energy for 
bond-alternative "linear" M6bius system are as follows: 

(No+1)/2 2~r (2j + 1) , 

(No-Op/2 21r(2j+1) k . "1 
+ k=oY~ sin N ~  ~2kJ, (9a) 

2~r (2i + 1)] ~/2 
E=o~+[fl~+fl~+2flxfl2cos N~o+{ J (9b) 

where the minus sign applies to 

(No-  5) (No-  3) 
1 = 0 , 1  . . . .  - - , - - ,  

4 4 

the plus sign applies to 

i = ( - ~ - - ~ ) ,  ( - ~ - ~ ) "  �9 �9 ( ~ Z - ~ )  (max), 

and where for 

N o - 1  
1= 4 ' E=a.  

The twist angles for this linear system are those for the No + 1 parent MSbius 
cyclic system (in Table 1 set N to No + 1). The energy pattern is given in Fig. 3. 

The above formula reduce to those for uniform-bond No-chain "linear" M6bius 
system as follows: 

~/  2 No ~ ( 2 ] + l ) k c k  ' 
~0j= ~ Y sin (10a) 

k=l N o + l  

~" (2] + 1) 
E = a + 2fl cos - -  (10b) 

N o + l  

N o - 1  
] = 0, 1, 2 , . . . ,  - - ~ ( m a x ) .  

The maximum total number of energy levels is (No+ 1)/2 which is half of the 
number in the (No + 1) parent cyclic MSbius system. This number is far less than 
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No _ _  No-1 
2 - -  No 

No+3 No +5 
2 

No+3 No+ 1 
4 2 

No+l N o - 1  0 N~ 
2 4 2 

No-1 No-3 
4 2 

/%-5 No-3 
4. 2 

3 1 3 

2 . . . .  2 

1 0 1 

2j+1 . . . .  j . . . .  j ' 0  
E - o  

No=2ne-1 No=2no-1 
a b 

Fig. 3. Comparison of bond-alternating and uniform "linear" M6bius system (6a) with corresponding 
linear Huckel system (6b), both of No atoms. The MSbius energy (Eq. (9)-(10)) is seen to have 
missing levels and the maximum number of M6bius levels (No+ 1)/2 is short of the required No 
levels and therefore is incomplete. This linear M6bius system is split off from an even-atom 
No+ 1 = 2N Cyclic Mobius parent. (Odd-atom Cyclic M6bius parent with alternating-bond is not 
amenable to such treatment by cyclic (periodic) boundary condition.) The H/ickel energy from 
(2N0+2) parent is taken to be E = a +2fl cos 7rj'/(No+ 1), (compare Eq. (10)) 

the expected No levels for the No-atom "l inear" M6bius system and hence the 
"l inear" M6bius system is incomplete. Since the boundary condition at both ends 
is the same for a linear system regardless of its twist and regardless of whether 
we call it M6bius or H/ickel, we see that the above solutions, Eqs. (9)-(10) are 
incomplete in another sense-- that  it contains only selected levels of a linear 
system. This will be clear when we compare the "l inear" M6bius system of Eq. 
(10) with the linear H/ickel system. The latter can be obtained from 2 N + 2  
parent rather than the (N + 1) parent. From (Eq. 7) when y = 1, the bliickel 
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linear system is 

�9 2 "1/2 ( ~rj' 

k=l \ N + I ]  

Comparison shows (see Fig. 3) that the "linear" M6bius system is part of the 
more general Hiickel linear system. It contains only wavefunctions with odd 
] ' (=2]+ 1) which are necessarily only those selected waves that when joined 
together to form the parent (No+ 1) circle will have destructive interference if 
extended over the same single circle--a condition for the truncated MSbius 
system (see Appendix A). This brings up the question of the parentage of linear 
systems in the next section. Parentage is pertinent when we want to know the 
kind of wavefunction to which the parent system will correlate at the instant of 
dissociation into fragments---from a (N + 1) atom parent to a N-atom fragment 
and from (2N + 2) to N etc. 

4. Twisted Linear Hiickel-Mi~bius Systems and their Parentage-- 
Orbital Phase Coherence Upon Dissociation 

In the treatment of finite, linear open chain of atoms, an important concern is 
to make sure that the wavefunction vanishes at both ends of the open chain. 
This we accomplish in the usual way for linear Hfickel system with uniform or 
alternating bonds, by adding N + 2 phantom atoms to the N-atom chain to 
complete a ring. The cyclic boundary condition is then applied to the resulting 
2N + 2 ring. 

The choice of (2N +2) cyclic parent for a linear N-chain is a natural and 
convenient approximation for LCAO-MO as discussed previously. 

However, other parent molecules can also contain N sine functions. And as long 
as the sine waves vanish beyond the boundary of the N-chain, they are acceptable 
approximations if the end effects are not severe. For example a (2N + 1) parent 
cyclic Hiickel system (see Fig. 2) will have N doubly-degenerate energy levels 
yielding N cosine and N sine wavefunctions. The sine wavefunctions will vanish 
at atom O and at the fractional atom position (N + 1/2). When the phases are 
symmetrized with respect to the two chain ends, the waves vanish at fractional 
atom positions 1/4 and N + 3/4 and they are reasonable approximations to the 
linear wavefunction of the N-atom chain at the instant of fragmentation from 
the (2N + 1) parent circle. This is because when rejoined to form the parent it 
will have the correct phase  coherence to mesh  with the rest. Of course the angle 
of twist must vary with cyclic parent size in order to be compatible with the 
cyclic boundary condition. The most general formula for the linear N-chain 
phase-symmetrized (instantaneous) wavefunction and energy derived from given 
parents with given twist angles are as follows: 

twist 

)r = 0, A N  + B for 7r and ~b orbitals, 
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77" 
X = 0, for ~5 orbitals. 

2(AN + B ) 

From parent Hiickel circle 2(AN + B); 

0i = Y~ sm k - - +  &k, (11a) 
k=1 2 

E i =a +2/3 COSAN+B , ( l lb )  

where j =integers . . . .  j 'A = max {[2(AN +B)]  . . . .  - 2 } / 2  or max {[2(AN+ 
B)]oda- 1}/2. 

f '  is an integer and/3 is the resonance integral corrected for the twist. For ~r 
orbital/3 =/3 ~ cos X, for 8 orbital/3 =/30 cos 2X and for & orbital/3 ---/3~ cos 3X. 
From parent H/ickel circle 4(AN +B) 

(18) 
u ~r] k - ~ + ~ -  &k, (12a) 0i = k=12 sin 2 ( A ~ + B  ) 

E = ~ +2/3 cos 2(AN+B)'  (12b) 

where /' = integers = 2j'A . . . .  max {[4(AN +B)]  . . . .  - 2}/2 or max {[4(AN + 
B ) ] o d  d - -  1}/2. 

A, B may be fractional numbers but - 1  < B / A -  1 must be true to insure that 
the wave does not vanish at more than one extra atom beyond the end of the 
chain. (This latter would obligate us to include this extra atom in LCAO- 
treatment). 

The wavefunctions vanish at fractional atomic positions k = 1 / 2 - B / ( 2 A )  and 
k = N +  1/2+B/(2A). 

As was alluded to previously, the parent molecule dictates not only the instan- 
taneous phase of the daughter fragment but also the energy levels of the fragment, 
For example, for the same twist of 27r/(N + 1), the smaller cyclic parent (N + 1) 
gives linear-system energies that are larger (quantum number 2/" vs./') than those 
from the larger cyclic parent (2N + 2). This is in parallel to the fact that smaller 
systems have larger quantum. At the same time while the smaller parent gives 
insufficient sine wavefunctions and only selected (excited) energies, the larger 
parent will allow for all of the sine functions and a complete set of energiees 
(for the linear fragment). 

Fragments can also be dissociated from M6bius parents. The general formula 
for the linear N-chain phase-symmetrized (instantaneous), wavefunction and 
energy derived from given parents with given twist angles are obtained as follows. 
These were referred to previously (Sect. 3) as "linear" M6bius systems (Eqs. 
(9)-(10)). 



416 Y.-N. Chiu 

twist 

"8" 

X A N + B  
for ~- and r orbitals, 

for 8 orbitals. 
2(AN + B) 

From parent M6bius cycle (AN +B) 

N 7r(2]+1) , 1 ~A) 
Oj = 32 sin ~ - -~ -~ -  @ - ~ +  Ck, (13a) 

k = l  

rr (2/+ 1) 
E = a  +2fl  cos A N + B '  (13b) 

where/' = integers = (]'A - 1)/2 = 0, 1, 2 . . . . .  max - 1 , 

] (AN +B)oda-- 3] 
or max -- . 

]' = odd integers and A is also odd. 

From parent MSbius circle 3(AN +B),  

1B) ~(2 i+ t )  (k_~+~_X 
~i = k ~ l  y" sin 3 ( ~ - B )  \ r (14a) 

~(2y+1) 
E = a + 2fl cos (14b) 

3 ( A N + B )  

where ] = i n t e g e r s =  (3] 'A-1) /2= 1, 4, 7 . . . .  max { [ 3 ( A N 2 B ) ]  . . . .  1], 

or max I [ 3 ( A N  +B )]odd - 3 }. 

As alluded to previously there is no linear M6bius system per se, only linear 
systems derived from M6bius parent with appropriate twist and with insufficient 
and selected energy levels and special phase coherence factor. Namely, when 
rejoined into a MObius parent, they will have the correct phase. 

The phase factors tell where the electron wave has vanishing nodes. When 
combined with the correlation to selected energy levels of the fragmentation 
product, they may be of interest in the diabatic dissociation of (Htickel or MSbius) 
circlic system. For example, a five-member Hfickel ring may be dissociated into 
N and N '  fragments, with N = 2 and N '  = 3 or N = 4 and N '  = 1. At the instant 
of dissociation the phase and ~- electron (only) energy of fragment N = 2 (the 
ethylenic fragment) may be obtained from the parent according to 5 = 2N + 1. 
Those for the allylic fragment N '  = 3 may be obtained from the parent according 
to 5 = 2 N ' - 1 .  This may be compared with the final adiabatically equilibrated 



B ond-Alternating Hiickel-MSbius Systems 417 

fragment for ethylene (from 2N + 2 = 6, six-member cyclic parent) and allyl 
(from 2N'  + 2 = 8, eight-member cyclic parent). 

5. Finite Open-Chain Helical Systems 

While strictly speaking the Born-Von  Karman cyclic boundary condition [18] 
may be applied only in infinite systems, it has nevertheless been applied to finite 
helical polymers in the past. From the treatment of last Section, it is seen that 
unless the twists and turns of a linear chain dovetail smoothly into Hiickel or 
M6bius condition in a parent circle, none of these cyclic (periodic) conditions is 
strictly applicable. 

II " ~  t 

u 

In this Section we shall derive, for finite helices, a few requirements for these 
cyclic conditions. We consider a right circular helix (I) wound around the Z axis. 
We describe a point on the helical curve as follows: [31-33] 

X = a  c o s r  

Y = a sin r (15) 

Z = b (4 - 7rt) 

where the azimuthal angle r measures from the starting point on the X axis 
and t is the number of turns. The pitch at the end of one turn or at r = 27r is 
bTr. The mutually perpendicular, tangent (t'), normal (rl) and binormal (/~) to 
the curve at a given point are 

}" = ( - a  sin r a cos r b) / x /a - -~  2 

ri = ( -cos  r - s in  &, 0) 

/~ = (b sin r - b  cos r a)/~/a-2+b 2. 

(16a) 

(16b) 

(16c) 
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A w-atomic orbital parallel to the tangent is similar to the in-plane ~- orbital 
for a Walsh-model cycloalkane (Sect. 2). The normal is always pointed past the 
Z axis. The binormal may be taken for convenience as the axis for perpendicular 
orbitals similar to those off-plane orbitals. (A "off-plane" 7r orbital simply points 
along/3 direction). If this helix is made up of N atoms completing t (may be 
fractional) turns, then the azimuthal angle between two successive atoms should 
be ~b = 27rt/(N- 1). At the first atom (~b = 0) the binormal vector (or the "off- 
plane" ~--orbital) is 

H1 = (0, -b, a ) / 4 ~ .  

At the second atom, the binormal vector has the form of (16c). The angle 
between these two binormals is the twist angle X0 between the two "off-plane" 
atomic orbitals and may be approximated for large N and smooth helix from 
the scalar product of these two vectors. Viz. 

1 
cos gO-a2+b~(a2+b 2 cos ~b) 

l___~.( a2 2t~r \ 
-- - - a 2 + b 2 ~  + b2 cos ~__-~-). (17a) 

Similarly for "in-plane" type orbital along the tangent of curve, the twist angle 
is defined by: 

1 2 
cos Xi - a 2 ~_ b 2 (a cos ~b + b 2) 

1 [ 2 2t~- .2 \  
= a - ~ - ~ a  cos~--L--~+b ). (17b) 

Here X is a dihedral angle defined only between two successive atomic orbitals 
and strictly speaking is valid only when the two centers are assumed very close. 
However, after a complete integral turn (t = integer = n) of the helix ~b = 2~rt = 
2~rn, it is seen that Eq. (17) gives cos X = 1 or X = 2~', returning all twisted 
orbitals to the original as expected. The same result obtains if the orbital is taken 
to be along an arbitrary vector P~+q~ +sB provided p2+q2+s2= 1. Eq. (17) 
is the basic condition governing the relationship between the size, the (fractional) 
number of turns of the finite helix, its radius and its pitch. However this condition 
is not enough if we are to apply cyclic boundary condition to the cyclic parent 
molecule of this finite helical chain. This parent molecule must have integral 
number of turns for the twist and turns of the helix to dove-tail into a closed 
smooth ring. For the Hiickel and M6bius condition we take the parent size as 
2(AN +B) and (AN +B) respectively and get the twist angles (h ,h for Hfickel 
and X" for M6bius) as follows: 

2tTr 
2(AN +B)  ~ = 2~-n (Hiickel) 

(18a) 
h 217r 

X 2(AN+B) 
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2t~r 
(AN + B) ~ = 27rn' (M6bius) 

(21 + 1)~r (18b) 
m 

X (AN+B) 

where/ ,  n and n' are integers, and the Hfickel and M6bius conditions are from 
Table 1, (the X'S in Eq. (18) are for ~r and 4~ orbitals for 8 orbitals reduce the 
angle by half). 

For both conditions Eqs. (1"7) and (18) to hold and be compatible we combine 
them to solve for the necessary ratio of a/b as related to other (somewhat 
adjustable) parameters A and B : 

"off-plane" orbital (along binormal) 

(Hiickel) 

a2 sin -~2-~+2(AN+B) ~rsin N - 1  2 (AN+B)  ~r 

b-~ = I~r , (19a) 
sin 2 

2(AN+B) 

(M/Sbius) 

[ 2t 2 I + 1  ]~- . [ 2t 2 I + 1  ]Tr 
a2 sin ~ f - i - - ~ - ~ + B - J - ~ s m  N-~I  AN+B 2 
b- ~ = (19b) 

�9 2 ( 2 I + 1 ) ~ "  
sin 

2(AN+B) 

For "in-plane" orbital (along tangent) the role of a and b is interchanged and 
the ratio is the inverse of those of "off-plane" orbitals. Eq. (19) above is for ~- 
and 4~ orbitals for 6 orbitals read 2(AN +B) for every (AN +B). 

The wavefunction of the linear chain may then be obtained from the cyclic 
parent according to equations similar to Eqs. (11) and (13). 

Examples for Eq. (19) for some finite systems with various a/b ratios are given 
in Table 2 where the analytic form of wavefunctions and energies are also given. 
In principle, for a finite chain of molecules one can solve in numerical form the 
energies and LCAO wavefunctions [34-38], even including electronic interac- 
tions in SCF treatment, and other sophisticated approximations [36]. Therefore 
the conditions and wavefunctions derived here are more meaningful as a guide 
to dissociation of a finite helical chain from a parent cyclic molecule (as a guide 
to energy and phase correlation). The theoretical treatment (Eqs. (18)-(19) 
defines the relationship between the helix parameters of parent and fragments. 
Qualitative understanding of the orbital phases is also possible given a/b ratios 
approximating the values of the theoretical model. As is seen from Table 2 the 
most natural dissociation giving a complete set of ground energy levels for a 
linear fragment is from a (2N + 2) cyclic parent in H/Jckel case. Dissociation 
from M/Sbius (N + 1) parent or (3N + 3) parent either gives insufficient number 
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of energy levels or excited energies. It may be mentioned that although the 
justifications of periodic boundary condition have been given in the past [39-40], 
these are concerned with the longitudinal symmetry along the backbone of the 
helix. Only Power and Thirunamachandran [32] has considered the transverse 
motions of a free electron so far, and they were not concerned with the twist of 
orbitals along the backbone of the helix. 
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Appendix A 

Planar Bond-Alternating M~Sbius Cyclo-octatetraene and [1, 7] Antarafacial 
Hydrogen Migration. 

As discussed in Sect. 2 the chemical system M/Sbius Cyclooctatetraene (N = 2n = 
8) is the truncated system from a true M6bius ring of N = 16. For this truncated 
system with alternating bonds the (complex) wavefunction and energy from Sect. 

9 8 

12 13 

15 

14 
Fig. A-1. Schematic representation of a 
"double-circle" M6bius ring of sixteen 
atoms, and the representation of a planar 
bond-alternating cyclooctatetraene by a 
truncated M/Sbius system (from atom no. 0 
to no. 7 and back to no. 0). R is the average 
radius of the ring (see (Eqs. (2)-(3)) 
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3 are as follows 

1_1_[ ~ e[~i(2j+l)/4](k_l/(l+v)) ~ + 3 
O]=~/'~Lk-l~5 _ IP2k-1 k=02 e[~'(2i+l)/4142k], 

(A-l) 
�9 + + 2fl,f12 cos 27r (2j + 1)| ''2 , "  

t 8 J 

where the - sign applies to/ '  = 0, 1, 6, 7 and the sign + applies to j = 2, 3, 4, 
5, with two-fold degeneracy between ] and (7-/') levels. The ratio of bond length 
[9] is y = 0a/02 = 1.455/1.365 = 1.0659 and 1/(1 +Y) = 0.484. The energy levels 
and numbering convention are given in Fig. A-1. The real wavefunctions in 
terms of cosine (0 c) and sine (0 s) functions can be obtained by linear combination 
of the two degenerate complex wavefunctions. The extension to the true "double- 
circle" MSbius ring system is straightforward by making use the symmetry 
property of sine/cosine functions. Thus, 

0ic,7--/" = N�89 + 0//7--/') 

[ ~  rr(2j + 1) 3 
= Nc cos - - ( k  - 0.484)&2k 1 + ~ cos - -  

k 1 4 k=O 

4 ~.(2/'+ 1)( k 3 
-No Y~ c o s -  -0.484)&2k+7+ Y. 

k7 1 4 k=O 

~r(2j + 1) 
4 kO2k] 

COS 7r(21+ 1)k&2k+8], 

(A-3) 
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Fig. A-2. Energy levels and LCAO-MO 
phases of a truncated M6bius system (planar 
cyclooctatetraene) and its theoretical extension 
into a "double-circle" complete M6bius ring 
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1 
~j~,'7-j = N~/(~Oj - ~7-i) 

= Ns sin - -  - 0.484)4~ak-1 + Y. sin - -  h~2k 
1 4 k=o 4 

-Ns [ k~l sin ~'(24+ 1)(k- 0"484)~b2k+7 + k=o~si n ~(2j+l)k~2k+8],-~ 
(A-4)  

W h e r e  the second  brackets  in Eqs.  (A-3)  and (A-4)  indicate the ex tens ion  into 
the "second" M6bius  circle and also clearly shows  that a shift of a tomic  number  

E ~  3 5 + , ~ , - 3 5 ~o+ 

~ 1--2§ 
+ + + + ~ "  ~ , / " ~  ~ " ~  " - ~  + + + + 

/ ~0-1-2+3- 5+6+7 ". / ~. \Xe+ea~ ~ v " ~  - 

~ - ~ x s + e ~ "  1-2-3 +z,- 5-6  +7 

_ v . v . v _  + - . ,  

1L2z ~ ~  X4+s 1 + 2 -3 -a - 5 + 6 + 7 

+e~,~.3. - + ~ 0 + 1 - 2 - 3 + 5 + 6 - 7  
+ + 

0 

~+~~ ~ 7  + - + - 

~'vf, 3 + - + 

I 

+ •  + - - + + - ~ _  Ar2+~01 ~ ~ "  ~1+2+3+/~+5+6+7 

0+1 +2 +3-5-6-7 / -  ~, ,~ 
+ e  + + + ~ + +~.  ~, + + + ~- 

+ + + 

Fig. A-3. Correlation diagram for [1, 7] antarafacial hydrogen migration. The hydrogen assumes 
the ~bo position. The truncated M6bius energy levels are split in a way assuming the Ho- bond is 
more stable than the C--C ~r-bond. (The phase relationship however is the same as Fig. A-2.) 
e stands for a small mixing coefficient. The influence of ~ antibonding is largest in the top "o-*" 
orbital but less on the 13- 6 orbital 

This way of representing the reacting molecules is a departure from the usual way of  separating ~r 
and cr system. We combine one hydrogen and a 7-carbon skeleton to get eight energy levels with 
due fidelity to their respective original phases. The dotted lines indicate the only possible instan- 
taneous diabatic correlation of the phase of the parent M6bius system with the fragment (heptatriene) 
when the hydrogen is split off. (The wavefunction having a vanishing node at the hydrogen atom, 
see Sect. IV). Note the large breaks in energy (indicated by dotted line) between lowest (or) and the 
highest (or*) levels with their respective neighbors. (Not drawn to scale) 
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by 8 units changes the sign of the coefficient--provided the "second"  M6bius 
circle is not truncated away. If the orbitals have the M6bius twist of rr/8 a shift 
of atomic numbering by 8 also changes the sign of the orbitals and the extension 
to the second circle gives redundant  results. The extension is not needed for the 
problem here nor in other chemical applications of Z i m m e r m a n  [3, 6, 7]. An 
example where extension is needed is in the author 's  study of internal rotation 
of e thane (C2H6) using six-fold instead of three-fold symmetry  [41]. 

The relative phases of the orbitals (up to the complete M6bius double-circle 
ring) corresponding to these coefficients in (A-3, 4) are given in Fig. A-2.  

To  apply the " t runca ted"  M6bius ring to chemical systems it is imperative to 
match the numbering convention with appropriate  atomic interaction, i.e. the 
interaction-sign changes between the the first (~b0 here) and the last (~N-1 here) 
atom, the latter a tom is the one linked to the next (double) circle. For [1, 7] 
antarafacial hydrogen shift in C7H10 we take the H - a t o m  to be ~b0 which has 
positive interaction (upper face) with ~b l, the first P~r orbital of the C7H9 conjugate 
chain. The interaction of ~b0 with ~b7 the last P~'-orbital is taken to be negative 
(lower face). Figure A-3 shows that bonding orbitals correlates to bonding 
orbitals and the reaction is allowed by the orbital following method of Z immer-  
man [3]. However  we stress here that because of the lack of three-fold or higher 
symmetry,  there is no longer two-fold degeneracy in the energy levels--even if 
the H - a t o m  in the transition state is situated (two-fold) symmetrically with respect 
to the two end carbon atoms. Fur thermore  the numbering o3 the atoms is 
inflexible, it cannot be shifted (Sect. 2). As a result the wavefunctions dictate 
correlation from orbital with large o- to the orbital with large tr similarly for r 
to ~r. A similar application of the M6bius concept and molecular orbital following 
method of Z i m m e r m a n  to the triplet-singlet rearrangement  of cyclopropylidene 
to allene was also given by the author [42]. 
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